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Abstract-This paper presents a plane strain analysis of a constant length hydraulic fracture
embedded in an infinite poroelastic domain. The fracture is uniformly loaded by tluid pressurir..llion.
For clarity of physil:al interpretation. this IO<lding is decomposed into two modes. consisting
respectively of a unit step for the normal stress and a unit step for the pore pressure along the
fracture. For each loading mode. the transient fracture profile. the fracture volume. the leak-lIlT
volume. and the stress intensity factor arc analyzed. First. short- and long-term asymptlltie
e~pressions arc derived in dosed form hased 11n analytical arguments. The full tr<lnsient hch<lviors
<Ire then formul<lted as <I p<lir of coupled singular integr<ll equ<ltions. The solutions ,He found vi<l
L.aplace transform. <lnd numeric<ll discretization of the integr<ll equ<ltillns.

INTRODl!CTION

This paper sets out to examine the fundamentals of the response of a st.ttionary fracture
embedded in an infinite. two-dimensional. porodastic medium. The problem studied here
is the sudden opening of a linear crack of length 21.. at time I = O. by a pressurized Iluid
which is kept at a constant pressure fJr for ( > 0 (see Fig. I). The time-dependent response
of the fracture to this loading is analyzed on the basis of the following assumptions:

• the material behaves according to the linear porocl'lstic theory of Biot (1941). and is
homogeneous and isotropic ;

• deformation in the medium. induced by pressurization of the fracture, is subject to the
condition of plane strain;

• before pressurization of the fracture. the initial state is characterized by a uniform
compressive stress and pore pressure;

• the fracture is oriented in the direction perpendicular to the minimum compressive far­
field stress;

• the tluid in the fracture and the pore Iluid have identical rheological properties (i.e.
viscosity and compressibility).

This analysis is motivated by the need to evaluate the impact of poroclastic effects
during hydraulic fracturing treatments (a technique widely used by the oil and gas industry
to enhance underground hydrocarbon recovery). This technique consists of injecting a
fracturing Iluid into a wellbore to initiate and propagate a fracture in the direction per­
pendicular to the ill silll minimum compressive stress. Poroelastic effects. which reflect the
interaction between deformation of the porous solid and diffusion of the pore fluid, are
generally not taken into account in the current generation of hydraulic fracturing design
codes (see e.g. a review in Mendelsohn. I984a. b). There is. however. field evidence (Smith,
1985; Nierode. 1985) that the injection pressure is higher than that predicted by existing
design models. when poroelastic effects appear to be important.

The objective of the prescnt paper is to provide a basic understanding of the poroelastic
processes in hydraulic fracturing via the idealized problem of a stationary fracture subject
to a constant fluid pressure. This problem is the natural extension of the classical Griffith
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Fig. I. A fluid-pressurized stationary fracture.

fracture problem in elasticity. In a companion paper (Cheng and Detournay, 1991), the
idealized case of a steadily moving fracture will be examined.

The paper is organized as follows. It begins with a succinct presentation of the Biot
theory of poroelasticity, followed by a description of the loading decomposition into two
fundamental modes. The small and large time asymptotic behavior of the fracture response
to the step loading is then examined using analytical arguments. Next. the transient problem
is formulated as a pair of coupled singular integral equations. The numerical techniques of
Laplace transform and inversion. and also discretization of the integral eqmltions. are
described. Numeric;ll results for the evolution of the fracture profile. fracture volume, fluid
leak-off volume, and stress intensity factor arc then presented. This paper concludes with
a discussion of the impal:t of porocJasticity on hydraulic fracturing treatment.

I'OROELASTICITY

The theory of poroclasticity introduced by Biot (1941) provides a simple consistent
description of the coupled deformation/diffusion phenomena that characterize the response
of fluid-saturated porous solids. As in the original formulation of Riot (see also Rice and
Cleary, 1976), the constitutive equations are expressed here in terms of the total stress (1,/.
the pore pressure p, and their conjugate quantities whieh are respectively the solid strain e,j
(derivable from an ;lverage solid displacement vector II,) and the variation of fluid content
per unit reference volume (. For plane strain conditions. the constitutive equations of a
linear isotropic poroclastic material can be written as

( I)

(2)

where the indices take the values I and 2, and repeated indices imply summation. The
symbol e5,/ denotes the Kronecker delta.

The basic material constants introduced above are: the shear modulus G, the drained
and undrained Poisson's ratios vand vu • and the Riot coellicient Ct. Compared to an isotropic
clastic material, two additional constants Ct and Vu have thus been introduced. It can be
shown (Geertsma, 1957; Rice and Cleary. 1976) that:t is a characteristic of the solid skeleton
only. while Vu reflects the mechanical properties of both the fluid and solid constituent. Note
that their range of variation is 0 < Ct :::; I and Y < ~'u :::; 0.5.

The parameters oc and Yu control the magnitude of two distinct poroelastic effects which
are embodied in the constitutive equations (I) and (2) :

• an increase of the pore pressure induces a dilation of the porous solid. This volumetric
strain. e, is proportional to the Riot coefficient :x and to the change of pore pressure as
2Ge = (1-2v)«(1u+2:xp);

• under undrained conditions (corresponding to' = 0), a perturbation of the pore pressure
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is induced. which is proportional to the difference Vu - v and the change of the mean
stress. p = - (\'u - v)u•• I%(I- 2v). From (1) we see that the material responds elastically.
with the undrained Poisson's ratio vu • to variation of the mean stress. since 2Getj =

u'J - vuu"<>'j"

The poroelastic effects described above are strongest when % and Vu simultaneously
assume their upper bound values. This limiting case occurs when the compressibility of
both the fluid and solid constituents is much smaller than the compressibility of the porous
solid skeleton (Rice and Cleary. 1976; Verruijt. 1969). Conversely. the contrast between
drained and undrained response disappears in the case of a very compressible fluid (such
as gas). since then Vu ~ v.

Besides the constitutive equations (I) and (2). a complete description of the governing
equations for poroelasticity consists also of:

the equilibrium equations

Darcy's law

and the fluid mass balance equation

Uij.j = O.

q, = -"P,i'

iJ(
"-+C! =0.
(1/ ','

(3)

(4)

(5)

where C/, is the specific discharge vector and" the permeability coel1icient. which can be
expressed as klJI. where k is the intrinsic perme'lbility (dimension of length squared) and JI
the Ihlid vicosity. In the above. we have neglected the existence of body forces and fluid
sources.

The governing equations can be combined to yield field equations in terms of the
displacement vector II, and the pore pressure p. The resultant is a Navier equation with a
coupling term:

and an inhomogeneous diffusion equation for p

2p c( I - 2v)( I - \..), 2G( VU - v) 211kJc-.- - -.------- v·p + -_.,....---- -- = 0
2/ (I - 2\'u)( I - v) (;((1- 2v)( I - 2v.) 2/ •

where c is a ditfusivity coefficient given by

(6)

(7)

(8)

LOADING DECOMPOSITION

The application of a fluid pressure on the fracture wall actually corresponds to two
non-zero boundary conditions. one for the normal stress. Un = -Pro the other for the pore
pressure. P = Pro To account for the existence ofa far-field stress (normal to the fracture) and
a pore pressure with different magnitudes. the loading is decomposed into two fundamental
modes:
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• mode I

• mode 2
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0"n (x, t) = - H(t).

pix. t) = 0;

O"n(X, t) = 0,

pix. t) = H(t).

(9)

( 10)

for - L ~ x ~ L. In the above, H(t) denotes the Heaviside step function. The initial
conditions for both problems are zero stress and pore pressure everywhere.

Once the solutions of the fundamental modes are found. the fracture responses such
as maximum aperture opening. fracture volume and fluid leak-ofT volume can be expressed
in the forms of response functions .F 1 and .-F;. respectively, for modes 1 and 2. In the
presence of a far-field compressive stress all normal to the fracture and a pore pressure Po.
the actual response due to a constant tluid pressure p, is calculated by a linear combination
of the responses of mode I and mode 2 :

( II)

Furthcrmon:. for a transicnt pressurization!" = PI(I). the fracture response can be obtaincd
by a simple application of Duhamel's theon:m

( 12)

ASYMPTOTIC ANALYSIS

Before performing a full transient analysis of the pressurized crack. we discuss the
asymptotic behavior of the two fundamental loading modes.

Il,,[ot/e I lout/illg
Shorl-Ierlll respollse o/Ihe Facture roll/llle. Just after application of the normal stress

0"" = - I inside the crack (i.e. at I = 0'). the medium responds elastically with undrained
elastic moduli (see Rice and Cleary. 1976. for a discussion of the general short- and long­
term behavior of a poroelastic system). The stress and displacement field are thus given by
the solution of Sneddon (1946). In particular. the initial fracture opening is given by

2(1-1',,) J:' "
D,I(x.O·) = --'G~---' L - -x- ; -L ~ x ~ L. (13 )

where nIl is the normal displacement discontinuity defined as

D,I(x.t)=I/,(X.O ;1)-I/,(x,O';I); -L~x~L. (14)

The initial crack volume. V~J)(O"'). is calculated by integrating (13) over the crack length
(-L.L):
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( 15)

Consider next the early time evolution of the fracture volume. The undrained elastic
response at t = OT is associated with the instant generation of a pore pressure field

At the fracture surface an = a.H = - I, hence

I
. 2(vu - v)
1m p =. ; y = 0, - L ~ x ~ L.

1-0· ?:( I - 2~')

( 16)

(17)

This initial value of p along the boundary is not in equilibrium with the imposed boundary
condition p =0 and must be dissipated. At small times the diffusion process at the crack
surface is approximately one-dimensional. As demonstrated in the subsequent mode 2
analysis, there is a fracture volume change associated with this one-dimensional diffusion
process. This incremental volume change is calculated by multiplying the magnitude of
pressure - 2( Vu - v)/?:( I - 2~'), see (17), by the right-hand side of (32) (which gives the early
time fracture volume reduction associated with a unit pore pressure on the fracture surface).
Combining this incremental volume change with the initial contribution (15), the small time
fracture volume is therefore given by

Jet
for L! « I. (I X)

LOlIg-lerm limit olihelraeillre l'olu/1/e. As time approaches infinity, thc pore pressure
indw.:ed by loading of the cmck has completely vanished and the medium responds e1asti­
c'llly. The crack opening is again described by the Sneddon's solution (15), but with the
drained Poisson's ratio substituted for the undrained one:

1,'111( .•,,) = 1tl.:!(1- \.~
'c~' G' ( 19)

The final aperture is thus gre<lter than the initi<ll one; this is to be expected since the
porodastic material is softer when drained. Between I ;:; O· <Ind t ;:; 00, the fracture will
thus experience a progressive time-dependent volume ilH.:re'lse of the amount

(20)

Shorl-Ierm respollse ofthe h'ak-oU·w!U/1/t'. As discussed above, at I =O' a pore pressure
field (16) is instantly generated, which must be dissipated. At very small times «('tIL!« I),
the fluid nux ncar the fracture surface is predominantly one-dimensional. Since the diffusion
equation for pressure (7) becomes uncoupled in a one-dimensional geometry, the tluid tlux
for a unit pressure drop is given by

I<
q.. = ; y =0, - L ~ x ~ L.. Fd (21 )

Integrating this solution over time, multiplying by 4L (the total crack face length) and by
the initial pore pressure drop (17), yields the cumulative fluid leak-off volume:
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ct
for L 2 « I. (11)

The negative sign indicates that fluid is extracted from the medium.

Long-term limit of the leak-off l"Olume. Integrating the fluid mass balance equation (5)
over time and over the domain, and applying the divergence theorem to the flux term, we
observe that the leak-off volume can be evaluated as the integration of the variation of fluid
content per unit volume ~ over the domain. In particular, in the long-term limit (t -+ oc)

(13)

where Jv d V denotes domain integration. In the above we have utilized the condition that
no fluid is exchanged with infinity due to the favorable pore pressure field induced at t = 0+
(p - llr 2 as r -+ 00, thus q, -- llr J

, where r is the radial distance from the origin).
From the poroelastic constitutive equations (I) and (2), it can be shown that when all

excess pore pressure is dissipated (at time equal to infinity), , is related to the solid dilatation
e as

lim' = a lim e.
, ...... 1.) I_·T>

(24)

Instead of directly performing the domain integration. the integral of e can be evaluated as
a volume change of the fracture. The linal fracture volume V~ "( (X) given in (19) consists
of contributions from volumetric and deviatoric strains in the medium. The latter con­
tribution is simply computed by setting v to 1/2 into (19), giving 1t1}12G. The volumetric
strain contribution to V~ 11(:Xl) is then calculated as the difference. All calculations done,
the linal nuid volume exchanged between the medium and the fracture is:

(25)

Shorl- aflllloll.lJ-IL'rm limil of Ihe slress ifllell.vity faclor. Consider first the long-term
value of the stress intensity factor. As time I -+ 00, the medium responds as a drained clastic
material. From the ehlssical solution, the stress intensity factor (SI F) is given by

(26)

It is of interest to note that the above quantity is independent of any material property.
The initial value of the SIF is reduced with respect to its long-term value by a factor

(I - vu)/(I - v). This reduction of the SIF is explained using the following heuristic
argument, which is based on the results of Rice and Simons (1976) and Simons (1977) for
steadily moving semi-infinite cracks. At time I = 0 ~, the medium responds et'lstically (with
an undrained Poisson's ratio) and a pore pressure field is induced around the crack. This
initial pore pressure is, however, characterized by infinite gradients at the tips, with the
consequence that the pore pressure at the tips vanishes at I > 0 (in other words, the crack
tips are effectively drained at I > 0). Since the r- 1/2 stress singularity is preserved (Rice and
Simons, 1976; Simons, 1977), the classical elastic relationship between the crack opening
displacement and the SIF applies therefore at all times:

where

, J~G. Dn/(, = -._--- 11m~ ,
J8(1- ~,) ~~o fi (27)
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(28)

Substituting Dn in (27) by its initial value [given by (13)]. it can be seen that the small time
value of the SIF is

(29)

Mode 2 loading
Short- and long-term response of the fracwre volume. Using the theorem of reciprocity

of work. it is first proven that the mode 2 fracture volume is actually equal to the mode I
fluid leak-off volume. From the reci procal theorem ofporoelastici ty (Cheng and Predeleanu.
1987; Cleary. 1977) [see also Nowacki (1986) for the equivalent thermoelastic theorem].
the following boundary integral equation can be written in a domain free from initial
disturbances

1WI(X; t)IIFI(X; I) - t~ :I(X; t)lI) II(X; 1)1 dS(X)

- 1[/,(1)(;(; I)/,(:I(X;I)_/,(:I(X; I)/,III(X; t)jdS(x) = o. (30)

In the above. t; = (T'I"I is the boundary traction vector. with n i denoting the components of
the unit outward normal to the boundary; /' = S:l q,", dt is the tluid displacement vector
normal to the boundary; S is the boundary of the solution domain; and the superscripts
(I) and (2) mark quantities of two independent poroclastic states. Here. these two states
are associated with loading modes I and 2. and the boundary refers to the fracture faces.

Substituting the boundary conditions (9) and (10) in (30) and performing the inte­
gration. it is apparent that the mode 2 fr~lcture volume is equal to the mode I tluid leak-olT
volume at all times:

(31 )

From the mode I results. we directly obtain that

('1. (X7tL 2(1-2v)
V.- (rx,) = - --"-_....:..

, 2G

(32)

(33)

The above values are negative. indicating that mode 2 loading induces a "closure" of the
fracture (of course. it is assumed that the crack remains open under combined mode I and
2 loading). This closure is the result of the dilatation of the porous solid around the fracture,
caused by the increase of pore pressure.

It is also of interest to examine the long-term limit of fracture volume. V~21(00). from
a different perspective. At large times, the pore pressure in the region surrounding the
fracture reaches a near constant value (characterized by axial symmetry). In the absence of
a fracture cut. this pore pressure would have induced an irrotational displacement field. It
can be shown (see Appendix A) that under these circumstances the stress field is directly
related to the pore pressure by
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au + a".
-~- = -rfP. (34)

As t -+ x. the pore pressure p in the region around the fracture approaches the asymptotic
value of I. and a uniform confining stress develops:

au = a,.,. = - '1 ; as t -x . (35)

To impose the condition of a fracture with zero stresses on the surface. the solution of an
internally-loaded Griffith fracture in a drained medium (an' ='1 and an = O. at
- L ~ x ~ L. y = 0; and p = 0 everywhere) is superposed. The final fracture volume is
equal to that created by the second problem. and is calculated as the Sneddon solution (19)
multiplied by the l~lctor -11. The result is identical to (33). The long-term effect on the
fracture volume caused by a unit rise of the pore pressure is therefore equivalent to the
application of a tensile stress a B = 'Ion the fracture faces. This stress has been called the
"back-stress" by Cleary (1980).

Short- lIlId /olll/-Ierlll respollse ot the /mk-o/r cO/lillie. Early after application of the
step pressure. a one-dimensional flow perpendicular to the fracture faces takes place. The
early time behavior of the lluid leak-otT volume can thus again be derived from expression
(21). and is given by

for
Cl

i « I.
L-

(36)

At large times. the dilTusion takes a "pseudo-radial" pattern. Following the earlier
argument, eqn (7) uncouples to becollle a homogeneous difrusion equation (A I) [IU) = 0
because of the mediuJll being infinitel. The large time leak-oIl' volullle can be obtained from
the dassical solution of a steep rise of pressure on the perimeter of a cin.:ular hole (Carslaw
and Jaeger, 11)51):

for
cl

, » 1.
1.-

(37)

In the ahove. J" and Y" an: Bessel fUlH.;tions of the lirst and sewnd kind. respectively. and
II = 2L(TC is the "equivalent radius".

Short- lIlId /oll.lJ-terlll limit ol the stress illtellsity li/ctor. At time t = 0 f. there is no
displacement 011 the crack f:lce induced by mode 2 loading. Conscqucntly.

OX)

At time t = -r... the deformation of the fracture surf~lce is equivalent to the application of
a normal stress equal to 1/. It follows therefore that

(39)

Here again the neg.ltive SIF should be interpreted as a reduction of the (positive) stress
intensity factor due to mode I loading.

INTEGRAL EQUATION FORMULATIOr-;

The transient solution is obtained using an integral equation technique. The concept
is described below. A hydraulic fracture in a poroelastic medium is a surface across which
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the solid displacements and the normal fluid flux are discontinuous. Such a discontinuity
surface can mathematically be simulated by a distribution over time and space of impulse
point displacement discontinuities (00) and sources. If the density of these singularities is
known. integral representations of the field quantities. such as displacement. flux. stress
and pore pressure. can be evaluated using the principle of superposition. In particular. for
a linear fracture pressurized by a fluid. the integral representations of the normal stress and
pore pressure on the crack surface are (Oetournay and Cheng. 1987; Vandamme et al..
1989) :

i'f+
L

p(x.t) = Dn(X..f)p~i(X-X..t-f)+Dr(X..f)Pi'(X-X..t-f)dx.dr.
o - L

(40)

where O'n = (1.1 •. denotes the normal stress on the fracture. Dn is the normal displacement
discontinuity density defined earlier. and Dr is the flux discontinuity density (source density.
or the rate of fluid leak-off per unit fracture length). The quantities marked with superscripts
"di" and "si" are the influence functions of an instantaneous point displacement discontin­
uity. and an instantaneous source. respectively: O'~~ is the normal stress and p~i the pressure
generated by a unit normal displacement discontinuity; O'~r and Pr' are those caused by a
unit fluid source. It should be remarked that the kernel functions in (40) contain hypcr­
singularities. lj(x-x.)~. Thc integration is meaningful only if it is intcrpreted in thc sense
of the Hadamard principal value (Hadamard. 1952; Hong and Chen. 1988).

To facilitate the numerical solution. the Laplace transformation is applied to (40): and
to reduce thc level of singularity in the kernels. an integration by parts is performed on thc
terms containing the displaccment discontinuity

(41 )

wherc the tildc overbardcnotes the Laplace transform. In thc abovcequations. 15;, = DD,,/cJx.
is the slope of the fracturc profilc. and

I
x

~i - ..II I ,

O'nn(X-X.S) = _c. O'n,,(X-x. .s)dx. (42)

is the influence function of normal stress duc to an instantaneous normal "cdge dislocation"
(a fracture with a constant normal displacement discontinuity extcnding from - 00 to X).
The kernel ;r.' is defined similarly. Also. to take c~lre of the free term which results from
this integration, an auxiliary condition of fracturc closure is introduced

I
~/'

o= D~(x.. s) dX.
-L

(43)

The poroelastic edge dislocation and fluid source influence functions can be obtained using
a variable decomposition scheme originally suggested by Biot (1956) [see Oetournay and
Cheng (1987) for details) :

SAS 27: 13-0
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-e. G I G(vu-~') [K;_;(=) J5 lx-xl ]
I1nn = --- + - --K, _,(=) •

2n:(I-v) x-X n:(I-vu)(l-v) X-X c x-X

a~f = 2~/\ [In Ix-xl- K;- 1(=) - Ko_ 1(=) + In AJ.
G(~' -~.) Ii I'"-xl-c'= __-" --'~K (-)

Pn 2n:'1(I-~'u)(l-v) c x-X I-I -.

I [ fl']pt=-.,- -lnlx-xl+Ko_,(=)-ln -,
_n:h: C

(44)

In the foregoing. = = #Ix-XI. and K Il _ I • K'_l' etc.• are the modified Bessel functions
of second kind without the leading terms:

Ko_,(=) = Ku(=)+ln =.

, I
K I _ 1(=) = K I (=) - _ .

.,
K:_ I (=) = K:(=)- .-;.

2 I
K, ,(=) = K,(=)- =~ + 2' (45)

The above quantities are non-singular.
In order to accurately represent the limiting behavior of fj~ near the crack tips

(15;, - ~ 1/,. where ~ is the distance from the tip). fj~ is factored hy a shape function

(46)

The solution of cj>(X.5) is therefore regular at crack tips and can be computed with high
accuracy. The stress intensity factor is then evaluated as

Gfi
K,(5) = ± 2(1~~ cj>( ±L, 5).

Substituting (44) and (46) into (41) and rearranging. we obtain

- G fH </>(X. s )
(1 (t' s) = _.- ----dX
n" 2n:(I-v) -t. (x-X)JL 2 -i!

'I f .. L
-+ 2'-- Dr(X.5) In Ix - xl dXn:/\ _L

(47)
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I f+L-
p(x.s) = -:.,- D,(x.s)lnlx-xldx

_Ttl\: - L

where F,-F~ are the non-singular parts of the intluence functions

F, = J'~ I~\'-=~I K I 1(=).
c x-x

1655

(48)

(49)

The two integral equations in (4X) arc respectively Cauchy (I/r) and logarithmic singular.
for nodes located 011 the crack. out not at the tips.

Equations (4X) and (43) can oe exploited oya numerical algorithm to solve for (~and
t>,. The details arc described in Appendix B.

RESULTS

We present oelow some transient numerical results for modes I and 2. which are
compared with the available asymptotic solutions. The material constants used for these
examples are v = 0.2. v. = 0.4 and:>: = (UN (or the Skempton pore pressure coellicient
lJ = O.X). The solutions. when properly non-dimensionalized. arc otherwise independent of
the rest of the parameters. The crack length 2L is discn:tized using six quadratic elements
of equal size. The numerical Laplace inversion was performed with six terms in the Stehfest
series.

Figure 2 displays the mode I fracture opening profile as a function of the dimensionless
time (* = ct! L 1. Due to symmetry. only half of the geometry is plotted. The small and large
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Fig. 2. Mode I fracture profile.
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Fig. 3. Mode I normalized fracture profile.

time asymptotic profiles. which are ellipses according to the elastic solution. (13). are shown
by dashed lines (the large time asymptotic solution is indistinguishable from the t* = 100
result). We observe that the poroelastic solution does approach these limits and that the
transient fracture profiles are remarkably elliptic.

Figure 3 shows the same fracture profiles as in Fig. 2. but each normalized by their
maximum opening. The resultant curves seem to collapse into a single curve with only a
slight fuzziness.

Figure 4 plots the negative of the fracture profile for mode 2. As can be seen. the
fracture has not re.u;hed its theoretical maximum closure even at t* = 100. This slow
convergence is a characteristic for diffusion in an infinite domain. In fact. the near steady
state solution is not attainable in realistic terms.

Figure 5 presents the mode 2 normalized fracture profile. The profile at small times is
not elliptic. although it approaches that shape fairly rapidly and becomes practically an
ellipse for t* > I.

Figure 6 displays the mode I fracture volume response. which is observed to increase
with time. Also plotted are small and large time asymptotic behaviors. (18) and (19) in
dashed lines. The small time asymptotic result appears to be an excellent approximation
for t* < 0.00 I.

Figure 7 shows both the negative mode 2 fracture volume and the negative mode I
fluid leak-otf volume. As indicated earlier. these quantities should be identical. This claim
is indeed supported by the numerical results as only a single curve appeared in Fig. 7. The
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small and large tim.: asymptotic behaviors. (32) and (33). are shown by dashed lin.:s. Th.:
large tim.: asymptotic solution is far from b.:ing reached as compared with the mod.: I
fr~l\.:ture volume case (Fig. 6). This discrepancy may be attributed to the time required for
the ditfusion to reach st.:ady state in the two cases. In the mode I case. the pore pressure
is generated in the near-crack region and diminishes toward infinity: it is more easily
dissipat.:d. For mode 2. the medium is initially free from pore pressure. As the pressure
fwnt propagates into the mediulll. the nux on the fracture t~lces decreases as t I': due to
diminishing pressure gradient in the near field. The mode 2 curve therefore lags far behind
its limiting value in the range of the plot.

Figure 8 presents the mode 2 fluid leak-off volume. The solution is unbounded. The
one-dimensional small time approximation (36). plotted as a lower bound by the dashed
line. follows the curve fairly well for a range of time. The large time solution (37). shown
as an upper bound by the dashed line. is based on a circular hole geometry and uncoupled
ditfusion equation. It is somewhat surprising to observe that this solution is a good approxi­
mation throughout time.

Figures 9 and 10 give the stress intensity l~lCtors for modes I and 2. respectively
(negative SIF in the mode 2 case). The limiting values given as (26). (29) and (39) are
shown by dashed lines.

SUMMARY I\ND CO:"'CLUSIOf\;

In this papl·r. the basic response of a stationary hydraulic fracture in an infinite
poroelastic medium has been presented. The solution may be viewed as an extension of the
dassical problem of a Grillith crack in an elastic m.:diulll. The analysis begins with asymp­
totic solutions which are hased on the limiting elastic .Ind di/rusion behaviors. TIll: full
transient solution requires an integral equation technique which makes use of a continuous
distribution of powelastic dislocation and source singularities along the fractun.:. The
solution is found by Laplace transform and inversion. and numerical discretization.

The fluid pressurization in the fracture is viewed here as a superposition of two modes.
the lirst one corresponding to the application of a normal stress on the fracture wall. the
second to a pore pressure. This decomposition is carried out not only for the convcnienee
of the mathematical solution in the presence of an initial stress (To and initial pore pressure
1'0. but also because it brings physical insight into two distinct processes.

Motivated hy considerations regarding hydraulic fracturing treatments. we have
emphasized the ealeulation of "global" quantitil.:s that arl.: important to the fracture d.:sign:
the fracture volume /',. thl.: fluid leak-oil' volume /',. and th.: stress intensity factor K,. The
tirst two quantities are associated with the amount of fracturing !luid relJuired in the
trl.:atment. and the last provides information cOIH:erning the fracture propagation criterion.
The local quantities. such as stress. displacement. flux. etc.. though not explicitly presented
hal.:. can also be calculated from the integral equations.

The pn:sent analysis. although simplistic in its assumptions. provides some important
guidelines concerning poroelastic etrects in hydraulic fracturing. Somc of these are discussed
below.

• Mode (loading indicates that the fracture volume (and aIso the aperture width) increases
as a function of treatment time. The mode 2 elli.:ets. however. predict a closure. The final
variation of fracture volume. combining both modes I and 2. is

(50)

For realistic stresses and material paraml.:ters in oil-bearing formations. thc abovl.: value
is typic.llly negative. indicating a reduction in aperture width with time. In the present
analysis. the fracturing prl.:ssurl.: is assumed to be constant on the fracture faces. In the
aelual operation. the pressure is controlled by the pumping rate. the leak-olf into the
formation. and the aperture width which introduces a resistance to the viscous tluid.
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When poroelasticity is incorporated into a hydraulic fracturing design model. a higher
fracturing pressure is predicted (Detournay et al.• )990).

• The fluid efflux into the formation (leak-off) is dominated by the mode 2 component. as
mode I only creates a small amount of influx which slightly impedes the mode 2 process.
We also discovered that the poroelastic coupling effect is weak in mode 2. The leak-oft'
volume calculated via poroelastic theory is nearly identical to that computed by the
uncoupled diffusion equation. It should be pointed out. however. that in the present
analysis the fracturing fluid is assumed to be of identical property to that of the reservoir
fluid. In reality. the contrast of rheology properties between the two fluids and also the
formation of the filter cake on the fracture surt~lcecalls for a more sophisticated treatment
of the pressure boundary condition .

• A technique known as micro-hydr~lU)ic fracturing is widely used in the industry for in
siru stress determination (Aboll-Sayed et al.• 1978). In this test. fluid is injected into a
borehole to create a small fracture and then the valve is shut off to lock the fluid in the
cavity. As the fluid gradu~illy permeates into the formation. the fracture closes and a
fracture closun: pressure Pr.." may be interpreted from the pressure log. Equating this
quantity to the minimum in siru stress (To is only correct for impermeable rocks. For
permeable formation. the result of the present analysis can be used to demonstrate that
the actual rdation involves the magnitude of the nl:'t strcsSPr-(To. the net pressure flr-fl".
porodastic paramders \'u and x. and the pressurization time (Detournay cr al.. Il)~\).

AckIlOld,.,It/C",Clllv ...The alltllllrs wl'1I1d like to th;lIlk Dowell Schlumhcrgcr for pcrmissilll! to puhlish tl1<'sC
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APPENDIX A: IRROTATIONAL CONDITION

It has previllllsly h..-en noled by Biot (19561 .md de Jossclin de Jong (1963) that under a irrotatillnal
disphlcel11ent condition. equation (7) uncouples from the displacement to h..-come

"I', -eV'p = {(f).u . (AI)

where ((I) is a functi(lIl of time. With the exception of the one·dimensi(lIlal problem and problems with unbounlk-d
d",nain. Ill) is generally unknown. When }lI) is lern. the system of (6) and (A I) is equiv<llent to the theory of
therll1<1t stress (uncllupled therll1oelasticity).

After s"lIIe manipulation. we liml f"r plane strain IhOlt the following stress pressure relation exists

where

~(\ - :!v)
'I ~ 2( 1-- v}

is a p"melasticity cocllieient with the r<lnge U ~ 'I ,,; U.5, anu .qU} is again an unknown function of time. For the
current prohlem. which inv"lvcs an unbounded d"ll1ain, we can locate a point at inlinity where hoth n" and l'
v.lllish. The function !III) hence has t" be zero everywhere.

APPENDIX B: NUMERICAL IMPLEMENTATION

Til linu .1\1 approximOlte sllluti"n "I' the integral equations (4K) and (43). ,~ .\lul V, C.1I1 either be expressed
as continuous functions such as Chcbyshev or Lobalto-Chehyshev polyn"ll1ials IErdogan ,'I al.. 1973: Theoc<tris
anu loakimitlis. 1".177). or be representetl as piecewise continuous functions IGcr'lSllulis. 19K2: Parihar ,111.1
Ramachandran. 19Mb). In the present implementation. the piecewise qU<ldratic polynomial approxim.llion of
Gerasoulis (19K:!) is adopted. This method. however. requires some modifications which arc described below.

In an dfort to obtain exact expressions for the integrals. Gerasoulis (l9H2). as well as others. approxim.lles
by polynomials not only the unknown singularity densities (here. ,P(X..r) and [),(X•.v)1 but also their product with
the kernels tfor example. 'PIX. J)F,(x - X.J)). In other words, on a quadratic element wilh tWllend nodcs locatcd
at 'I.,..: anu 'I.~•• such a product can be expressed as

:.0

,P(X,·v)f',(x-X•.v};;: L 2',I'l.),Flx,•.r)F,(x-X" v}.
... ~lt

where 2',(X) 'Ire sh.tpe functions b<lseu I'n the Lagrangian poly'nomi.tls

Substituting the discretized form (BI) into the corresponding integral in (411J, we obtain

(81)

(8:!)

(B31

The integral on the right-hand side of (B3) is independent of the kernel function F, and has o.."Cn f"und analytically
by Ger"soulis (19K:!).
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This procedure. 'llthllugh very etficlent 'lnd accurate In dealing with clastic crack problems, leads to a solutioI'
brea~dL''''n in the present application. The difficulty appears to be rooted in the inadequate appro.ximation of the
kernel functions F. I = I~ by IBI). The kernel functions arc generally non-monotonic. The relative steepness of
the peak in an element IS controlled by two scaling factors: a fixed scak of the e1emenUize Ifor a fixed number
of elements used In solutionl. and a variable one for the Bessel functions. measured as" C.L For a typical problem,
the "due of,' needs to be varied between 10 • and 10". As s becomes large. a steep peak profile may be
located l'n an clement. Sampling the function at only three nodal points of the element can completely miss its
ch.lr.I({c'fhti". In the actual numerlcallmplementati,'n, the sL'luti"n breaks d"wn as ,oon a" approaches 10'" L'
I,'r a limited number of clements. ReductIOn of the clement size is not an ctfective measure as It cannot catch up
with the rate of increase L'f s. A modification of the Gerasoulis procedure is therefore necessary .

.,\t the cost of perfllrming a numerical Integration, eljn (83) is cast In a ditferent form

(8~)

L'sing a numerical quadrature, a large number of sampling points can be distributed to capture the variation of
the functil>n. The procedure adopted herein is the DCADRE subroutine of the IMSL (1985) library, which is
\lased lln an adaptive Rllmberg extrap(llation procedure that ,lutomatically exel'utes to a user-specified accuracy.
With this improH:ment in the program. no dilliculty was experienced in carrying out the solution into the small
tim,' (lar~e s) range.

T,' ~nd the ~umerical solution. tIlt: integral equations with a pre-assigl1l:d s value were discretiled into N
ljuadratlc clements (~N+ I nodes}. The system invellves ~N+ 2 unkllllwns. To generate the linear system of
equ,lti"ns. the stress ,'ljuation in (~ll) is collocated for the known normal stress boundary condition at the 2N
nPlks Ipcated at the ljuarter and three-quarter length of each clement. The pressure eljuation is collocated at
~S+ I Illleks distributcd at equal distances over the fracture length. whil'h generally do Illlt coincide with the
sin:" nPlles. These ~s+ I equatipns. combined with the au.xiliary e111surc cpndition (~3). produce jw;t enough
eqlLlti"ns ",r the solutilln of tlie linear system. The discrete slliutions III' ,F and ", can then be integratcd III
prpduc'e other quantiti,'s Ill' inlcrest. SUeil as the fracture displacement. fracture volume. lluiJ leak-olf volume. etc.

Om:e the integral equations (~X) and (4,1) have been solved in terllls of tlie Lapl'll'e transform 01',1> and {),
usmg the procedure deSCribed above. a numericalmversion technique is applied to lind the solution in time, Thc
al~ontlilll adllptcd here is the mctliod of Stehli:st (1'170), which relluires evaluation of lhe lransform solution for
rl'al \;ducs "I' thc transform parametcr only: klling !lsI bc the transform of ((I) which can be determined for
;1I1\" dlScretc v;due of 1'. then Ihe al'pro.,imate sl.lution in the timc domain is computed aL:conhng to

Wllh thc L:1lc11il'lcnl ('" glvcn by

'''''''".;' " k' '(~k)1

Coo .~(-I)"'·" L ',., 'k':'k' I, I)'( k·'('k'-I,)'.''_'01 II.' (",'- - ).. (, - ,11- I, -
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