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Abstract—This paper presents a plane strain analysis of a constant length hydraulic fracture
embedded inan infinite poroclastic domain. The fracture is uniformly loaded by fluid pressurization.
For clarity of physical interpretation, this loading is decomposed into two modcs, consisting
respectively of a unit step for the normal stress and a unit step for the pore pressure along the
fracture. For cach loading mode. the transient fracture profile, the fracture volume, the leak-ofl
volume, and the stress intensity factor are analyzed. First, short- and long-term asymptotic
expressions arce derived in closed form based on analytical arguments. The full transient behaviors
are then formulated as a pair of coupled singular integral equations. The solutions are found via
Lapliace transform, and numerical discretization of the integral cquations.

INTRODUCTION

This paper scts out to examine the fundamentals of the response of a stationary fracture
embedded in an infinite, two-dimensional, poroclastic medium. The problem studied here
is the sudden opening of a lincar crack of length 2L, at time ¢ = 0, by a pressurized fluid
which is kept at a constant pressure pr tor ¢ > 0 (see Fig. 1). The time-dependent response
of the fracture to this loading is analyzed on the basis of the following assumptions

o the material behaves according to the linear poroclastic theory of Biot (1941), and is
homogeneous and isotropic;

o deformation in the medium, induced by pressurization of the fracture, is subject to the
condition of pliane strain;

e before pressurization of the fracture, the initial state is characterized by a uniform
compressive stress and pore pressure

e the fracture is oriented in the direction perpendicular to the minimum compressive far-
field stress ;

o the fluid in the fracture and the pore fluid have identical rheological properties (i.e.
viscosity and compressibility).

This analysis is motivated by the need to evaluate the impact of poroelastic effects
during hydraulic fracturing treatments {a technique widely used by the oil and gas industry
to enhance underground hydrocarbon recovery). This technique consists of injecting a
fracturing fluid into a wellbore to initiate and propagate a fracture in the direction per-
pendicular to the in situ minimum compressive stress. Poroclastic effects, which reflect the
interaction between deformation of the porous solid and diffusion of the pore fluid, are
generally not taken into account in the current gencration of hydraulic fracturing design
codes (sce c.g. a review in Mendelsohn, 1984a, b). There is, however, ficld evidence (Smith,
1985 ; Nicrode, 1985) that the injection pressure is higher than that predicted by existing
design models, when poroelastic cffects appear to be important.

The objective of the present paper is to provide a basic understanding of the poroelastic
processes in hydraulic fracturing via the idecalized problem of a stationary fracture subject
to a constant fluid pressure. This problem is the natural extension of the classical Griffith
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Fig. 1. A fluid-pressurized stationary fracture.

fracture problem in elasticity. In a companion paper (Cheng and Detournay, 1991). the
idealized case of a steadily moving fracture will be examined.

The paper is organized as follows. It begins with a succinct presentation of the Biot
theory of poroelasticity, followed by a description of the loading decomposition into two
fundamental modes. The small and large time asymptotic behavior of the fracture response
to the step loading is then examined using analytical arguments. Next, the transient problem
is formulated as a pair of coupled singular integral equations. The numerical techaiques of
Laplace transform and inversion, and also discretization of the integral equations, are
described. Numerical results for the evolution of the fracture profile, fracture volume, fluid
leak-off volume, and stress intensity factor are then presented. This paper concludes with
a discussion of the impact of poroclasticity on hydraulic fracturing trcatment.

POROELASTICITY

The theory of poroclasticity introduced by Biot (1941) provides a simple consistent
description of the coupled deformation/diffusion phenomena that characterize the response
of fluid-saturated porous solids. As in the original formulation of Biot (sce also Rice and
Cleary, 1976). the constitutive equations are expressed here in terms of the total stress o,
the pore pressure p, and their conjugate quantities which are respectively the solid strain ¢,
(derivable from an average solid displacement vector u,) and the variation of fluid content
per unit reference volume {. For plane strain conditions, the constitutive equations of a
lincar isotropic poroclastic material can be written as

2Ge,; = 0,,—va,,0,+a(l —=2v)d,p, (1)
al(l—=2v)?
ZGE = a(l "2")0‘/(/( + ‘_(\_"*””_‘;‘2" . (2)

where the indices take the values | and 2, and repeated indices imply summation. The
symbol ¢, denotes the Kronecker delta.

The basic material constants introduced above arc: the shear modulus G, the drained
and undrained Poisson’s ratios v and v, and the Biot cocflicient 2. Compared to an isotropic
clastic material, two additional constants x and v, have thus been introduced. [t can be
shown (Geertsma, 1957 ; Rice and Cleary, 1976) that x is a characteristic of the solid skeleton
only, while v, reflects the mechanical properties of both the fluid and solid constituent. Note
that their range of variationis0 <2 < land v < v, £ 0.5.

The parameters 2 and v, control the magnitude of two distinct poroelastic effects which
are ecmbodied in the constitutive equations (1) and (2):

e an increasc of the pore pressure induces a dilation of the porous solid. This volumetric
strain, e, is proportional to the Biot coefficient 2 and to the change of pore pressure as
2Ge = (1 =2v){o + 22p) ;

e under undrained conditions (corresponding to { = 0), a perturbation of the pore pressure
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is induced. which is proportional to the difference v,—v and the change of the mean
stress, p = — (v, — V)6 /2(1 —2v). From (1) we see that the material responds elastically,
with the undrained Poisson’s ratio v,, to variation of the mean stress, since 2Ge,; =
G, — V00,

The poroelastic effects described above are strongest when x and v, simultaneously
assume their upper bound values. This limiting case occurs when the compressibility of
both the fluid and solid constituents is much smaller than the compressibility of the porous
solid skeleton (Rice and Cleary, 1976 Verruijt, 1969). Conversely. the contrast between
drained and undrained response disappears in the case of a very compressible fluid (such
as gas). since then v, ~ v,

Besides the constitutive equations (1) and (2), a complete description of the governing
equations for poroelasticity consists also of:

the equilibrium equations

0y, =0. (3
Darcy's law
g, = —Kp,. 4
and the fluid mass balance cquation
a
5 T4, =0. (5)

where ¢, is the specific discharge vector and & the permeability coeflicient, which can be
expressed as k/g, where & is the intrinsic permeability (dimension of length squared) and p
the fluid vicosity. In the above, we have neglected the existence of body forces and fluid
sources.

The governing equations can be combined to yield field equations in terms of the
displacement vector w, and the pore pressure p. The resultant is a Navier equation with a
coupling term:

G
szll, + - _‘; U g, —ap,; = 0, (6)

-2

and an inhomogencous diffusion equation for p

Cp_c(=20-v)g, =~ 2G0u=v) Cus )
o T (v =w Pl Ty a T
where ¢ is a diffusivity coefficient given by
Gl —=v)(v,—v
2G(1 -, =v) @

€= (=203 (1—v,)"

LOADING DECOMPOSITION

The application of a fluid pressure on the fracture wall actually corresponds to two
non-zero boundary conditions, one for the normal stress, g, = — py, the other for the pore
pressure, p = p.. To account for the existence of a far-field stress (normal to the fracture) and
a pore pressure with different magnitudes, the loading is decomposed into two fundamental
modes:
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e mode |
cg.lx.t) = — H(1),
plx.ty =0; 9)
e mode 2
o,(x.1) =0,
plx.0) = H(, (10)

for —L € x < L. In the above, H(:) denotes the Heaviside step function. The initial
conditions for both problems are zero stress and pore pressure everywhere.

Once the solutions of the fundamental modes are found, the fracture responses such
as maximum aperture opening, fracture volume and Huid leak-off volume can be expressed
in the forms of response functions .7, and .#,, respectively. for modes | and 2. In the
presence of a far-field compressive stress o, normal to the fracture and a pore pressure pg.
the actual response due to a constant fluid pressure py is calculated by a lincar combination
ol the responses of mode 1 and mode 2:

Fo= (m —a,).7 +(/’1‘“‘/7())-F:~ (rn

Furthermore, for a transient pressurization pe = pi(1), the fracture response can be obtained
by a simple application of Duhamel’s theorem

I3

In,
F) = Fi0[p(0°) =gl +F2(0[(0°) = pal + f [.F.<r—r>+:f:u—r>|":,i” dr.

(12)

ASYMPTOTIC ANALYSIS

Before performing a full transient analysis of the pressurized crack, we discuss the
asymptotic behavior of the two fundamental loading modes.

Mode | loading

Short-term response of the fracture volume. Just after application of the normal stress
o, = — | inside the crack (i.c. at r = 07), the medium responds elastically with undrained
elastic moduli (see Rice and Cleary, 1976, for a discussion of the general short- and long-
term behavior of a poroclastic system). The stress and displacement field are thus given by
the solution of Sneddon (1946). In particular, the initial fracture opening is given by

2l —v TR
D(x,0") = — _(-,‘_E) \/L“—.\"; —-L<xy<gL, (13)

where D, is the normal displacement discontinuity defined as
D.(x.0) =1u,(x,0 :)—u(x,0":0); —-L<x<gL. (14)

The initial crack volume, F{V(0*), is calculated by integrating (13) over the crack length
(—L.L):
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al (1 —v,)

VQ‘H ) =
¢ (07) c

(13)

Consider next the early time evolution of the fracture volume. The undrained elastic
response at t = 0~ is associated with the instant generation of a pore pressure field

. g ¥y
limp= — ——ou |i
10" p 1(1 _— v) Igl(?’ (U,r.t +6‘s‘r)' (l6)
At the fracture surface 5, = 6,, = —~ 1. hence
. (v, —v)
limp=""__": pv=0. -L<x<L. 7
= =y Y0 —Lhsxsi (n

This initial value of p along the boundary is not in equilibrium with the imposed boundary
condition p = 0 and must be dissipated. At small times the diffusion process at the crack
surface is approximately one-dimensional. As demonstrated in the subsequent mode 2
analysis, there is a fracture volume change associated with this one-dimensional diffusion
process. This incremental volume change is calculated by multiplying the magnitude of
pressure — 2(v, —v)/x{1 —2v}, see (17). by the right-hand side of (32) (which gives the carly
time fracture volume reduction associated with a unit pore pressure on the fracture surface).
Combining this incremental volume change with the initial contribution (15), the small time
fracture volume is therefore given by

A — v 1 2 | —v Vo . ‘. »
Py = L “, Vo) n oL (1 _f‘A",)A(Y,L v) \/u:: for \/u «l (18)
G G/n(1=v) L L

Long-term limit of the fracture rohane. As time approaches infinity, the pore pressure
induced by loading of the crack hus completely vanished and the medium responds clasti-
cally. The crack opening is again described by the Sncddon’s solution (15), but with the
drained Poisson’s ratio substituted for the undrained one:

"

_ i)

V(=) C

(19

The final aperture is thus greater than the initial one: this is to be expected since the
poroelastic material is softer when drained. Between £ =07 and ¢ = o, the fracture will
thus experience a progressive time-dependent volume increase of the amount

nli(v,—v)
pn o= T 20
NG p (20}

Short-term response of the leak-off volume. As discussed above, at 1 = 0 a pore pressure
ficld (16) is instantly generated, which must be dissipated. At very small times (cf/L7 « 1),
the fluid flux near the fracture surface is predominantly one-dimensional. Since the diffusion
equation for pressure (7) becomes uncoupled in a one-dimensional geometry, the fluid flux
for a unit pressure drop is given by

K
q)‘ - \/;t—(:; +

Integrating this solution over time, multiplying by 4L (the total crack face length) and by
the initial pore pressure drop (17), yields the cumulative fluid leak-off volume:

it
e

-L<x<L. @
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2(1=2 —
pivg < - SELEA=20 vu)\/g: for St (22)

G\/;:( | —v) L

The negative sign indicates that fluid is extracted from the medium.

Long-term limit of the leak-off volume. Integrating the fluid mass balance equation (5)
over time and over the domain, and applying the divergence theorem to the flux term, we
observe that the leak-off volume can be evaluated as the integration of the variation of fluid
content per unit volume  over the domain. In particular, in the long-term limit (¢ — )

b +L
ViV(0) = 2j J g.dxdt = j {im e dV (23)
0 L v

where ]',- dV denotes domain integration. In the above we have utilized the condition that
no fluid is exchanged with infinity due to the favorable pore pressure field induced at ¢ = 0+
(p~ 1/r*as r— oo, thus g, ~ 1/r®, where r is the radial distance from the origin).

From the poroelastic constitutive equations (1) and (2). it can be shown that when all
excess pore pressure is dissipated (at time equal to infinity), { is related to the solid dilatation
eas

lim{ =alime. (24)

L L t—s 1

Instead of directly performing the domain integration, the integral of ¢ can be evaluated as
a volume change of the fracture. The final fracture volume V" (o0) given in (19) consists
of contributions from volumetric and deviatoric strains in the medium. The latter con-
tribution is simply computed by sctting v to 1/2 into (19), giving nL.*/2G. The volumetric
strain contribution to ¥ "'(20) is then calculated as the difference. All calculations done,
the final fluid volume exchanged between the medium and the fracture is:

21 =9
ooy = - THEA=2) 25

Short- and long-term limit of the stress intensity fuctor. Consider first the long-term
value of the stress intensity factor. As time £ — oo, the medium responds as a drained elastic
material. From the classical solution, the stress intensity factor (SIF) is given by

Ky (w0) = /nL. (26)

It is of interest to note that the above quantity is independent of any material property.

The initial value of the SIF is reduced with respect to its long-term value by a factor
(1 =v,)/(} —=v). This reduction of the SIF is explained using the following heuristic
argument, which is bused on the results of Rice and Simons (1976) and Simons (1977) for
steadily moving semi-infinite cracks. At time ¢ = 0", the medium responds elastically (with
an undrained Poisson’s ratio) and a pore pressure field is induced around the crack. This
initial pore pressure is, however, characterized by infinitc gradients at the tips, with the
conscquence that the pore pressure at the tips vanishes at £ > 0 (in other words, the crack
tips are effectively drained at ¢ > 0). Since the r~ "2 stress singularity is preserved (Rice and
Simons, 1976 Simons, 1977), the classical elastic relationship between the crack opening
displacement and the SIF applics thercfore at all times:

. (27)

where
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¢=L-|x]. (28)

Substituting D, in (27) by its initial value [given by (13)], it can be seen that the small time
value of the SIF is

l—v, —
Ki"(0) = 57— JrL. (29)

Mode 2 loading

Short- and long-term response of the fracture volume. Using the theorem of reciprocity
of work. it is first proven that the mode 2 fracture volume is actually equal to the mode |
fluid leak-off volume. From the reciprocal theorem of poroelasticity (Cheng and Predeleanu.
1987 ; Cleary. 1977) [see also Nowacki (1986) for the equivalent thermoelastic theorem].
the following boundary integral equation can be written in a domain free from initial
disturbances

f (VG nw® (e =170 0V (s 0] dS()
AY
—f [P e PG =p o 0et (o 0]dS) = 0. (30)

In the above, ¢ = o, 2, is the boundary traction vector, with n; denoting the components of
the unit outward normal to the boundary ; ¢ = [{ g,n, dt is the fluid displacement vector
normal to the boundary: S is the boundary of the solution domain; and the superscripts
(1) and (2) mark quantitics of two independent poroclastic states. Here, these two states
are associated with loading modes | and 2, and the boundary refers to the fracture faces.

Substituting the boundary conditions (9) and (10) in (30) and performing the inte-
gration, it is apparent that the mode 2 fracture volume is cqual to the mode 1 fluid leak-ofT
volume at all times:

V‘(":): V:”. (31)

From the mode | results, we directly obtain that

2 P, I — oy o
o = - BEU0 ) fo g e 0
G/n(1 —v) L L
, anL(1 =2v)
Vi) = - —S5c 33

The above values are negative, indicating that mode 2 loading induces a *“‘closure™ of the
fracture (of course, it is assumed that the crack remains open under combined mode | and
2 loading). This closure is the result of the dilatation of the porous solid around the fracture,
causcd by the increase of pore pressurc.

It is also of interest to examinc the long-term limit of fracture volume, ¥{*(0), from
a different perspective. At large times, the pore pressure in the region surrounding the
fracture reaches a near constant value (characterized by axial symmetry). In the absence of
a fracture cut, this pore pressure would have induced an irrotational displacement field. It
can be shown (see Appendix A) that under these circumstances the stress field is directly
related to the pore pressure by
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G +0..

S —ypp. (34)

As 1 - x . the pore pressure p in the region around the fracture approaches the asymptotic
value of [, and a uniform confining stress develops:

O =G, = —H, a8 — . (35)

To impose the condition of a fracture with zero stresses on the surface. the solution of an
internally-loaded Griffith fracture in a drained medium (6., =95 and o, =0. at
—~L€x<g L, y=0:and p =0 everywhere) is superposed. The final fracture volume is
equal to that created by the second problem, and is calculated as the Sneddon solution (19)
multiplied by the factor —y. The result is identical to (33). The long-term effect on the
fracture volume caused by a unit rise of the pore pressure is therefore equivalent to the
application of a tensile stress 6¢® = 5 on the fracture faces. This stress has been called the
“buack-stress™ by Cleary (1980).

Short- and long-term response of the leak-off volume. Early after application of the
step pressure, a one-dimensional flow perpendicular to the fracture faces takes place. The
carly time behavior of the fluid leak-off volume can thus again be derived from expression
(21). and is given by

Vi) 8L’ \/” fi o (36)
A2 = e |y for 5 . -0
v

o/ T
At large times, the diffusion takes a “pscudo-radial” pattern. Following the earlier
argument, eqn (7) uncouples to become a homogencous diffusion equation (A1) [ f(1) =0
because of the medium being intinite]. The large time leak-off volume can be obtained from
the classical solution of a steep rise of pressure on the perimeter of a circular hole (Carslaw
and Jacger, 1959)

ViR B | c | for « » 1 (37
) = RTINS M RN VTN C N . 3
: r Jo cu'l)olan)+ Y j{aw)) L-

In the above, J, and Y, are Bessel functions of the first and second kind, respectively, and
« = 2L;m ts the “equivatlent radius™.

Short- and long-term limit of the stress intensity factor. At time ¢ = 0", there is no
displacement on the crack face induced by mode 2 loading. Consequently,

Ky (0") = 0. (38)

At time t = ., the deformation of the fracture surface is equivalent to the application of
a normal stress equal to n. It follows theretore that

K{¥(w) = —n/nL. (39)

Here again the negative SIF should be interpreted as a reduction of the (positive) stress
intensity factor due to mode | loading.

INTEGRAL EQUATION FORMULATION

The transient solution is obtained using an integral equation technique. The concept
is described below. A hydraulic fracture in a poroelastic medium is a surface across which
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the solid displacements and the normal fluid flux are discontinuous. Such a discontinuity
surface can mathematically be simulated by a distribution over time and space of impulse
point displacement discontinuities (DD) and sources. If the density of these singularities is
known, integral representations of the field quantities, such as displacement. flux. stress
and pore pressure, can be evaluated using the principle of superposition. In particular, for
a linear fracture pressurized by a fluid. the integral representations of the normal stress and
pore pressure on the crack surface are (Detournay and Cheng, 1987 Vandamme er al.,
1989) :

t +L
o (x.t) = J j Do (x. )08 (x ~ Y. t —T) + De(x, )b (x — x. t — 1) dy dr.
0 J-L

t "+L
plx.1) = J‘ J' Da(x. ) pE (x =% t = 1) + De(x. 1) pi (x — . t — T) dy dt. (40)
0 L

where o, = 6,, denotes the normal stress on the fracture, D, is the normal displacement
discontinuity density defined earlier, and Dy is the flux discontinuity density (source density,
or the rate of fluid leak-off per unit fracture length). The quantities marked with superscripts
“di” and “si” are the influence functions of an instantaneous point displacement discontin-
uity, and an instantaneous source, respectively : o4 is the normal stress and p¥ the pressure
generated by a unit normal displacement discontinuity ; ¢l and p}* are those caused by a
unit fluid source. It should be remarked that the kernel functions in (40) contain hyper-
singularities, 1/(x—x)*. The integration is meaningful only if it is interpreted in the sense
of the Hadamard principal value (Hadamard, 1952; Hong and Chen, 1988).

To facilitate the numerical solution, the Laplace transformation is applicd to (40) ; and
to reduce the level of singularity in the kernels, an integration by parts is performed on the
terms containing the displacement discontinuity

+ L
an(x.s5) = J Dy (. )G (x =24 8) + Do )i (x = 3. 5) dy,
1
+1 - -
plx,s) = ‘[ D (. ) Pa (x — . 8) + Do, 8) ' (x — . 8) dy. 41
I3

where the tilde overbar denotes the Laplace transform. In the above equations, B, = 0D, /dy,
is the slope of the fracture profile, and

4
Gan(X—%.8) = J Gan(x—y . 8)dy . (42)

- f

is the influence function of normal stress due to an instantancous normat “edge dislocation™
(a fracturc with a constant normal displacement discontinuity extending from — a0 to ).
The kernel 55 is defined similarly. Also, to take care of the free term which results from
this integration, an auxiliary condition of fracture closure is introduced

0= j B (xes) . (43)
L

The poroelastic edge dislocation and fluid source influence functions can be obtained using
a variable decomposition scheme originally suggested by Biot (1956) [see Detournay and
Cheng (1987) for details] :

SAS 27:13-p
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sei G | _ G(v,—Vv) K._:(2) é,x_xt ~
O = 2a(1=y) x—x n(l—vu)(l—v)[ x—x +\/c' x—x K"'('):l‘

&,’;‘r=_"__. Inlx—x|-K._,(c)=Ky_(z)+In ol .
2nk p

aot G("u—") S_,x-x' 3

Po —27t'I(l-—\'u)(|—V)\/; Y-y Ko

. :
l;',.=ﬁ[-lnu—xHKo-.(:)~l"£]- @

In the foregoing, - = MI.\'—xl. and K, _,. K,_,. etc.. are the modified Bessel functions
of second kind without the leading terms:

Ko_i(2) = Kg(z) +Inz,

! l
Ki_i(3)= K,(:)—-—:.

t

K:o1(2) = Ka(2) - .

21
K: 20 =K:(@) = 5+, (45)

The above quantitics are non-singular.
In order to accurately represent the limiting behavior of Dj, ncar the crack tips
(D}, ~ & "2 where £ is the distance from the tip), D}, is factored by a shape function

Bigs) = 23 .

o=

The solution of ¢(x, s) is therefore regular at crack tips and can be computed with high
accuracy. The stress intensity factor is then evaluated as

K@) =+ -G—-‘{i d(+L,s). (47)

2l —v)
Substituting (44) and (46) into (41) and rcarranging, we obtain

G [t e dy
2TI(I—V) s (x__x) Ll_i_l-

G.(x.5) =

+L
" A " —
+ 2;"J . De(x.s5)In|x -y dy

G(v,—v) L d( )F (x—1.5) dy

Cal-w0-n). g

+ 1

1 B .
T Ian ), Di(x. s)F (x—y.5)dy:
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. | B e
plx.s) = — S f . Di(x.5)In|x—x|dy

Gy, =) T IF(x—19)
ni—v)-n .o~ g

| A
+ e IAL Di(x.s)Fi(x—y.5)dy: (48)
where F\—F, are the non-singular parts of the influence functions

K. :(2) / X—)
BE DS Y lA—f‘ K, (2.

F,=—
: X—7 Ne x—y%

¥
F: = K:,I(:)+K(| l(:)—ln\/;"..

F,

It
PR
L
=iz
?
=
ty

Fi=Ky ,(2)=In \/: (49)

The two integral equations in (48) arce respectively Cauchy (1/r) and logarithmic singular,
for nodes located on the crack, but not at the tips.

Equations (48) and (43) can be exploited by a numerical algorithm to solve for ¢ and
D,. The details are described in Appendix B.

RESULTS

We present below some transient numerical results for modes | and 2, which are
compared with the available asymptotic solutions. The material constants used for these
examples are v =0.2, v, = 0.4 and x = 0.89 (or the Skempton pore pressure coellicient
B = 0.8). The solutions, when properly non-dimensionalized. are otherwise independent of
the rest of the parameters. The crack length 2L is diseretized using six quadratic clements
of equa! size. The numerical Laplace inversion was performed with six terms in the Stehfest
scries.

Figure 2 displays the mode | fracture opening profile as a function of the dimensionless
time ¢* = ct/L°. Duc to symmetry, only half of the geometry is plotted. The small and large

j ¥ = 100, =

o

.01
0.20!

L,G/pik

x/L

Fig. 2. Mode | fracture profile.
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Fig. 3. Mode | normalized fracture profile.

time asymptotic profiles, which are ellipses according to the elastic solution, (13), are shown
by dashed lines (the large time asymptotic solution is indistinguishable from the r* = 100
result). We observe that the poroelastic solution does approach these limits and that the
transicnt fracture profiles are remarkably elliptic.

Figure 3 shows the same fracture profiles as in Fig. 2, but each normalized by their
maximum opening. The resultant curves scem to collapse into a single curve with only a
slight fuzziness.

Figure 4 plots the negative of the fracture profile for mode 2. As can be seen, the
fracturc has not rcached its theoretical maximum closure cven at (* = 100. This slow
convergence is a characteristic for diffusion in an infinite domain. In fact, the near steady
state solution is not attainable in realistic terms.

Figure 5 presents the mode 2 normalized fracture profile. The profile at small times is
not clliptic, although it approaches that shape fairly rapidly and becomes practically an
cllipse for r* > 1.

Figure 6 displays the mode | fracture volume response, which is observed to increase
with time. Also plotted are small and large time asymptotic behaviors, (18) and (19) in
dashed lines. The small time asymptotic result appears to be an excellent approximation
for 1* < 0.001.

Figure 7 shows both the negative mode 2 fracture volume and the negative mode |
fluid leak-off volume. As indicated carlier, these quantities should be identical. This claim
is indeed supported by the numerical results as only a single curve appeared in Fig. 7. The
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small and large time asymptotic behaviors, (32) and (33). are shown by dashed lines. The
large time asymptotic solution s far from being reached as compared with the mode 1
fracture volume case (Fig. 6). This discrepancy may be attributed to the time required for
the diffusion to reach steady state in the two cases. In the mode | case. the pore pressure
is generated in the near-crack region and diminishes toward infinity: it is more casily
dissipated. For mode 2. the medium is inttially free from pore pressure. As the pressure
front propagates into the medium, the flux on the fracture faces decreases as ¢ ' = due to
diminishing pressure gradient in the neur field. The mode 2 curve therefore lags far behind
its limiting value in the range of the plot.

Figure 8 presents the mode 2 fluid leak-off volume. The solution is unbounded. The
one-dimensional small time approximation (36). plotted as a lower bound by the dashed
line, follows the curve fairly well for a range of time. The large time solution (37), shown
as an upper bound by the dashed line, is bused on a circufar hole geometry and uncoupled
diffusion equation, [t is somewhat surprising to observe that this solution is a good approxi-
mittion throughout time.

Figures 9 and 10 give the stress intensity factors for modes 1 and 2. respectively
(negative SIF in the mode 2 case). The limiting values given as (26). (29) and (39) arc
shown by dashed lines.

SUMMARY AND CONCLUSION

In this paper, the basic response of a stationary hydraulic fracture in an infinite
poroclastic medium has been presented. The solution may be viewed as an extension of the
classical problem of a Griflith crack in an elastic medium. The analysis begins with asymp-
totic solutions which arc based on the hmiting clastic and diffusion behaviors, The tull
transicnt solution requires an integral equation technique which makes use ol a continuous
distribution of poroclastic dislocation and source singularities along the fracture. The
solution is tound by Laplace transtorim and inversion, and numerical discretization.,

The Huid pressurization in the fructure is viewed here as a superposition of two modes,
the first one corresponding to the application of a normal stress on the fracture wall, the
sceond to a pore pressure, This decomposition is carried out not only for the convenience
of the mathematical solution in the presence of an initial stress o, and initial pore pressure
Po. but also becituse it brings physical insight into two distinct processes.

Modtivated by considerations regarding hydraulic fracturing treatments, we have
emphasized the caleulation of “global™ quantitics that are important to the fracture design
the fracture volume 17, the fluid leak-off volume 1, and the stress intensity factor K. The
first two quantitics arce assoctated with the amount of fracturing fluid required in the
treatment, and the last provides information concerning the fracture propagation criterion.
The local quantities, such as stress, displacement, flux, ete., though not explicitly presented
here, can also be caleulated from the integral equations.

The present analysis, although simplistic 1n its assumptions, provides some important
guidelines concerning poroclastic effects in hydraulic fracturing. Some of these are discussed
below.

o Mode | loading indicates that the fracture volume (and also the aperture width) increases
as a function of treatment time. The mode 2 effects, however, predict a closure. The final
vitriation of fracture volume, combining both modes | and 2. 1s

-

L 1=2v
Al = n(l. [(I’!“‘Un)(\'..“')-(Pr—lh))1( 5-‘):'. (50)

For realistic stresses and material parameters in oil-bearing formations, the above value
is typically ncgative, indicating a reduction in aperture width with time. In the present
analysis, the fracturing pressure is assumed to be constant on the fracture faces. In the
actual operation, the pressure is controlled by the pumping rate. the leak-off into the
formation, and the aperture width which introduces a resistance to the viscous fluid.
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When poroelasticity is incorporated into a hydraulic fracturing design model, a higher
fracturing pressure is predicted (Detournay er al., 1990).

o The fluid efflux into the formation (leak-ofT) is dominated by the mode 2 component. as
mode | only creates a small amount of influx which slightly impedes the mode 2 process.
We also discovered that the poroelastic coupling effect is weak in mode 2. The leak-off
volume calculated via poroelastic theory is nearly identical to that computed by the
uncoupled diffusion equation. It should be pointed out, however, that in the present
analysis the fracturing fluid is ussumed to be of identical property to that of the reservoir
fluid. In reality, the contrast of rheology properties between the two fluids and also the
formation of the filter cake on the fracture surface calls for a more sophisticated treatment
of the pressure boundary condition.

® A technique known as micro-hydraulic fracturing is widely used in the industry for in
situ stress determination (Abou-Sayed et al., 1978). In this test, Auid is injected into a
borchole to create a small fracture and then the valve is shut off to lock the fluid in the
cavity. As the fluid gradually permeates into the formation, the fracture closes and a
fracture closure pressure p,,, may be interpreted from the pressure log. Equating thiy
quantity to the minimum in situ stress @, 1s only correct for impermeable rocks. For
permeable formation, the result of the present analysis can be used to demonstrate that
the actual relation involves the magnitude of the net stress pp— g, the net pressure pe—p,.
poroclastic parameters v, and 2, and the pressurization time (Detournay ef al., 1989},
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APPENDIX A: IRROTATIONAL CONDITION

It has previously beea noted by Biot (1956) and de Josselin de Jong (1963) that under a irrotational
displacement condition, equation (7) uncouples {rom the displacement to become

Y

P W= fo. (A1)

a

where £(#) is a function of time. With the exception of the one-dimensional problent and problems with unbounded
domnin, /10 is generally unknown. When £(2) is zero, the system of (6) and (A1) is equivalent to the theory of
thermal stress (uncoupled thermoclasticity).

After some manipulation, we fidd for plance strain that the following stress pressure relation exists

oy = = 2gpk g, (A2)
where
21 ~2v)
- 3
" 31 vy {A})

is 2 poroclasticity coellicient with the range 0 < g < 0.5, and g{1) is again an unkpown function of time. For the
current problem, which involves an unbounded domain, we can locate a point at infinity where both g, und p
vanish. The function g{7) hence has to be zero everywhere.

APPENDIX B: NUMERICAL IMPLEMENTATION

To find an approximate solution of the integral equations (48) und (43}, & and B, can either be expressed
as continuous functions such as Chebyshev or Lobatto-Chebyshev polynomials (Erdogan er al., 1973 Theocaris
and loakimidis, 1977), or be represented as piccewise continuous Functions (Gerasoulis, 1982 Parihar and
Ramachandran, 1986). In the present implementation, the piecewise quadratic polynomial approximation of
Gerasoulis (1982) is adopted. This method, however, requires some modifications which are deseribed below,

In an effort to obtuin exact expressions for the integrals, Gerasoulis (1982), us well as others, approximates
by polynomials not only the unknown singularity densities [here, $(x, 5) and J,(x, )] but also their product with
the kernels (for example, Py, s1F,(x —x.5)). In other words, on a uadratic clement with two end nodes locuted
at %4 .2 and 2., such a product can be expressed as

k
P LAt E I IR SR A PO VX S L C I B (BL

-k

where 27,(x) are shape functions based on the Lagrangian polynomials

L) = [[ " “" (82)

Substituting the discretized form (B1) into the corresponding integral in (48), we obtain

™ F - by . 'y 7
f fb(l Dfte=x \)dx =4 E cp(x,..r)F,(,\'—-x,.x)J‘ * *T,(x) - dy. (83)
T - /L —x LRV \/L "l

The integral on the right-hand side of (B3} is independent of the kernel function F, and has been found analytically
by Gerasoulis (1982).
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Ths procedure, although very ctlicient and accurate in dealing with elastic crack problems. leads to a solution
breakdown in the present application. The dithiculty appears to be rooted in the inadequate approximation of the
kernel functions £, 1 = 14 by (BI). The kernel functions are generally non-monotonic. The relative steepness of
the peak in an clement s controlled by two scaling factors : a tixed scale of the element size (for a fixed number
of elements used in solution). and a variable one for the Bessel functions. measured as | ¢ 5. For a typical problem,
the value of 5 needs to be varied between 10 and [0°. As v becomes lurge. a steep peak profile may be
located on an element. Sampling the function at only three nodal points of the element can completely miss its
characteristics. In the actual numerical implementation, the solution breaks down as soon as s approaches 10%¢ L-
tor a limited number of elements. Reduction of the element size is not an etfective measure as it cannot catch up
with the rate of increase of 5. A medification of the Gerasoulis procedure is therefore necessary.

At the cost of performing a numerical integration. eqn (B3) is cast in a ditferent form

G (v =X S (0 A F =Y. 5)
o0 ’_—X dxz ¥ dir.w —Jf'—iw« dy. (B4)
Jru o N L —y- ik -2 T N Li-y*

Using a numerical quadrature. a large number of sampling points can be distributed to capture the variation of
the function. The procedure adopted herein is the DCADRE subroutine of the IMSL (1985) library, which is
based on an adaptive Romberg extrapolation procedure that automatically executes to a user-specified accuracy.
With this tmprovement in the program, no difficulty was experienced in carrying out the solution into the small
time (farge 8) range.

To find the numerical solution, the integral equations with a pre-assigned s value were discretized into V
quadratic elements (2V+ 1 nodes). The system involves 4V +2 unknowns. To generate the lincar system of
cquations, the stress cquation in (48) is collocated for the known normal stress boundary condition at the 2N
nodes located at the quarter and three-quarter length of each element. The pressure equation is collocated at
2N 41 nodes distributed at equal distances over the fracture length, which generally do not coincide with the
stress nodes, These 4V 4+ 1 equations, combined with the auxiliary closure condition (43), produce just enough
cquations for the solution of the lincar system. The discrete solutions of & and ), can then be integrated to
produce other quantities of interest, such as the tracture displacement, fracture volume, fluid leak-off volume, cte.

Ongee the integral equations (48) and (43) have been solved in terms of the Laplace transform of ¢ and D,
ustng the procedure described above, a numerical inversion technique is apphied to find the solution in time. The
algorithm adopted here is the method of Stehtest (1970), which requires evaluation of the transtorm solution for
real values of the transform parneter only : letting f(x) be the transform of /(1) which can be determined for
any diserete value of s, then the approximate solution in the time domain is computed according to

m2 Y o In2
JAUES Y G fin . (185)
L !
with the coetlicient ¢, given by

ounta ¥ 1} kY .‘( h73 )!
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